United States Patent

US009430355B2

(12) (10) Patent No.: US 9,430,355 B2
Braun et al. 45) Date of Patent: Aug. 30,2016
(54) SYSTEM DIAGNOSTICS WITH THREAD 2012/0079596 Al* 3/2012 Thomas ... GOGF 21/55
DUMP ANALYSIS 726/24
2013/0091380 Al* 4/2013 Decesaris GOGF 11/1428
: . ; : . 714/11
(71) Applicants:Matthias Braun, lllingen (DE); 2014/0310714 A1* 10/2014 Chan oo, GOGF 17/30598
Dietrich Mostowoj, Ludwigshafen am 718/102
Rhein (DE); Ralf Schmelter, Wiesloch
(DE); Thomas Klink, Moerlenbach OTHER PUBLICATIONS
(DE); Steffen Schreiber, Frankenthal
(DE); Johannes Scheerer, Heidelberg “DeveloperWorks: IBM Monitoring and Diagnostic Tools for
(DE); Michael Wintergerst, Java—Dump Analyzer Version 2.2”, [Online]. Retrieved from the
Muelhausen (DE) Internet: <URL: http://www/ibm.com/developerworks/java/jdk/
. . tools/dumpanalyzer/, (Accessed Aug. 15, 2014), 3 pgs.
(72) Tnventors: NI.attl.uas Braun, I.lhngen (DE); “Samurai—a GUI based tail, thread dump analysis tool”, Yusuke
Dietrich Mostowoj, Ludw1gshafen am Yamamoto, [Online]. Retrieved from the Internet: <URL: http://
Rhein (DE); Ralf Schmelter, Wiesloch samaraism.jp/samurai/en/index html, (Accessed Aug. 15, 2014), 7
(DE); Thomas Klink, Moerlenbach pes.
(DE); Steffen Schreiber, Frankenthal “TDA—Thread Dump Analyzer”, Ingo Rockel, (Sep. 2008), 21 pgs.
(DE); Johannes Scheerer, Heidelberg Lange, Fabian, “Create and Understand Java Heapdumps (Act 4)”,
(DE); Michael Wintergerst, codecentric Blog, [Online]. Retrieved from the Internet: <URL:
Muelhausen (DE) https://blog.codecentric.de/en/2011/08/create-and-understand-java-
headumps-act-4>, (Aug. 4, 2011), 10 pgs.
(73) Assignee: SAP SE, Walldorf (DE) Vogel, Lars, “Eclipse Memory Analyzer (MAT)—Tutorial”, Version
’ 1.1, [Online]. Retrieved from the Internet: <URL: http://www.
(*) Notice: Subject to any disclaimer, the term of this vogella.com/tutorials/EclipseMemoryAnalyzer/article htm >, (Apr.
patent is extended or adjusted under 35 30, 2013), 6 pgs.
U.S.C. 154(b) by 133 days. * cited by examiner
(21) Appl. No.: 14/490,206 (Continued)
(22) Filed: Sep. 18, 2014 Primary Examiner — Jigar Patel
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.
US 2016/0085656 Al Mar. 24, 2016
(51) Int. CL (57) ABSTRACT
Gool’ 11/34 (2006.01) A thread dump analysis tool analyzes a series of thread
(52) US. CL dumps and identifies one or more potential problems in the
CPC oo GOG6F 11/3476 (2013.01) application from which the thread dumps were generated.
(58) Field of Classification Search Hints regarding the potential problems are presented. The
CPCc....... GOG6F 11/366; GO6F 11/0715; GOG6F hints can be generated based on relative values generated by
11/079; GOGF 11/0778; GOGF 11/3476; analysis of sequential dumps. The hints may be hints that
GO6F 11/0751 could not be generated by analysis of a single thread dump.
See application file for complete search history. Other hints may be hints that are enhanced by analysis of
multiple thread dumps, whose importance is made clearer by
(56) References Cited appearance in multiple thread dumps, or that are unchanged

U.S. PATENT DOCUMENTS

8,626,904 Bl1* 1/2014 Oliff GO6F 9/524
709/224

2007/0220513 Al* 9/2007 Hwang GO6F 9/524
718/1

in detection, importance, or both, by the use of multiple
thread dumps. The hints can then be presented in order of
importance. Additionally or alternatively, hints below a
certain threshold of importance can be hidden.

17 Claims, 13 Drawing Sheets

U.S. Patent Aug. 30, 2016 Sheet 1 of 13 US 9,430,355 B2

100
/

Network-based System
(e.g., cloud-based system)

110

115 <

Server

Database

130 |

Device

132%

150 <

152% Device

FiG. 1

U.S. Patent Aug. 30, 2016 Sheet 2 of 13 US 9,430,355 B2

110
Server Machine
(e.g., cloud-based server machine)
210 220
Communication Dump
Module Module
230 | 240
Application Troubleshooter
Module Module
250
Database Module

FiIG. 2

U.S. Patent Aug. 30, 2016 Sheet 3 of 13 US 9,430,355 B2

130
User Device
310 320
Communication Dump
Module Module
330+ 340 <
Application Troubleshooter
Module Module
350 < 360
Database Module User Interface
Module

FIG. 3

US 9,430,355 B2

Sheet 4 of 13

Aug. 30, 2016

U.S. Patent

vy DIA

B e—1 29¢ [__Haveel+ [Haz+[[swe'Li+ WV IE L6 v1/82/S 6 dwn@
BRSSPI 19e [_HaM eoz+ [[] swoz/+ NV 62076 71/82/S g dwng
BERRRERSSE= o09c [_HayMczi+ [g e+ [F sw g9+ NV L2686 171/82/S 2 dung
1] ese Play 161+ [H swe 9+ WV 21886 ¥1/82/S 9 dwng
6G¢ Fay gel+ [Hd e+ [sw 269+ NV 2L:2€6 ¥1/82/S g dwng
65S aM 661+ [H swoz9+ IV 90:9€6 ¥1/82/S dwnq
6sc [Hadecz+ [Haz+ [F swool+ WV 00:G€6 71/82/S ¢ dwng
8Ge aM Leg+ [[l swggz+ WV SS:EE6 v1/82/S z dwng
8ge Hay zez+ [Hae+[H swvol+ WY 64286 71/82/S | dwng
16¢ Y 6€:1€:6 1/82/S 0 dwnq
Moy SOlEIS peaiyl Speaiyl O/ MOMIBN O/I8li4 8wl NdD dwejsswi] dwng pealyy
u M w M M M M M SONsSNelS
06 g8y 08t GlY 0Lt Gop 09v GG osp-*
00:01:00 0¥:90:00 0Z:€0:00 00:00:0
0l 6 g l 9 G e g z !
_ i friiend pos] fraenasis] |
oy —" OvY —_» 1S30 NV 9€:1¥:6 7102 ‘82 Aei e paiabbiy dwng peaiy] iseT
08y — ¥ 1S3D AV 6€:1£:6 7102 ‘82 Ae 1e pasabbly dwng peaay 1sii4
ON._\(\‘ 0l ”mQEDD pealy] usiej Jo Jsquinu |ejo |

Olv~— [NV L6 ¥1/82/S — NV LE:6 1/82/S] Joysdeus dwng pestyl

00¥ \

US 9,430,355 B2

Sheet 5 of 13

Aug. 30, 2016

U.S. Patent

¢ DId
awi} bupioolq

€10} 4O % | Z NOGE S| UDIUM [€J0} Ul SZ WQ ISES| J& JOJ SPealU) LZ POXIO0IG BUOZAWI L '[N AB(S} O %00] Y/
09G~___¥ UOBUSIUOD X007 +

GGG~ w 9OUBAS[OY MOT YIM SJUIH

S '/ 1se| 8y} ul sseubo.d Aue Jnoyum Sse|QBULBP 8JBSUN ISIW UNS POYISW Ul paulewsal pesly} 8jgeuunt
0SG ~____y PESIYL SAISSEd +

CPG aouBAdjeY UBIH Yum SjuIH

"S9SB ||B
40 %] Ul doj uo sem yajym jodsioy e aqg pinod doojArLyapoIUsS Ispodud$e 41 SO 0lU'UNS poyldaw syl
0%S —__y 10JSIOH POuIBIA +
SPOUIoW 9J0W
Bulg Bueeael
(weanginduj-oreael)suipeal1a00sd] | H deos wxel saainiasgam sadinies auibua des woo
i ()peas weangindujpaiayng or-eael
ploA () weansindu|paiayng ol eel
i (aun un ‘[JeiAg)pesswealisindupayoos 1oureae|
(U qur qul ‘[191Agf101diiosagali4 oI BARNOPEROHION20S WeanSINduoy20g 10U eA.|
MOB}S S,peallf) 9Ul v~ 0ES
"19)208 JOAISS SU] WOUL Jamsue Ue Jo) Buniem ag 01 swaas peallfl ay | Gz
"awin Buluuny s pealy) syl 10 %00} INOJe SI YoIym St W 1SB| 8yl Ul S81Ag
Bulusisues Inoyim (ZgHeg ;1uod [Ba0]) 2708 1od 00 LXISOY 1S0Y woJ) Buipeal sem ™
NAN/OIPI0S/SSa00.10/18 oSO/ WpW/ap beadd] 1a0g 7 JONIOM JoMON0 7 1060002 AXeED pea.y)] ¥——"0¢5
ssalboid Inoyum Qf 193003 -

w*——GEG

GlG~— ¥
01S~___y SS8460id InOyIM QO] 19008 +
S0S ~— -~ 20UBA3I9Y UBIH AJA UM SJUIH

00s \»

U.S. Patent Aug. 30, 2016 Sheet 6 of 13 US 9,430,355 B2

'/ 600

Numeric Relevance Rating Text Relevance Rating
0.91.0 Very High Relevance
0.75-0.9 High Relevance
0.25-0.75 Medium Relevance
0.1-0.25 Low Relevance
0.0-01 Very Low Relevance

FiIG. 6

U.S. Patent

Aug. 30, 2016 Sheet 7 of 13

710 N

ACCESS A FIRST THREAD DUMP

A

720 N

ACCESS A SECOND THREAD DUMP

A 4

730 N

COMPARE THE SECOND THREAD
DUMP WITH THE FIRST THREAD DUMP

740 N

¥
BASED ON A RESULT OF THE
COMPARISON, IDENTIFY A SET OF
PROBLEMS

A

750 N

PRESENT INFORMATION ABOUT ONE
OR MORE PROBLEMS IN THE SET

FIG. 7

US 9,430,355 B2

/ 700

U.S. Patent Aug. 30, 2016 Sheet 8 of 13 US 9,430,355 B2

/ 800

710 N ACCESS A FIRST THREAD DUMP

\ 4

720 N\ ACCESS A SECOND THREAD DUMP

730 COMPARE THE SECOND THREAD
DUMP WITH THE FIRST THREAD DUMP

BASED ON A RESULT OF THE
740N COMPARISON, IDENTIFY A SET OF
PROBLEMS

A

810N FOR EACH IDENTIFIED PROBLEM:

\ 4

820 ACCESS A RELEVANCE
RATING

840

PRESENT INFORMATION
ABOUT THE PROBLEM

RATING
EXCEEDS
THRESHOLD?

850 ~

DO NOT PRESENT
NO—» INFORMATION ABOUT
THE PROBLEM

FiG. 8§

U.S. Patent Aug. 30, 2016 Sheet 9 of 13 US 9,430,355 B2

/ 730

910 FOR EACH THREAD IN THE SECOND THREAD
A DUMP:

930

CORRESPONDING

THREAD IN THE FIRST NO+» NEW THREAD
THREAD DUMP?

YES
940 ~, v

COMPARE THE THREAD WITH THE
CORRESPONDING THREAD

950 ~ v

MARK AS DEAD EACH THREAD IN THE FIRST

THREAD DUMP NOT CORRESPONDING TO A
THREAD IN THE SECOND THREAD DUMP

FIG. 9

U.S. Patent Aug. 30,2016 Sheet 10 of 13 US 9,430,355 B2

940
/
1010~

INCREMENTAL CPU USE BY THREAD = TOTAL CPU USE BY THREAD IN
SECOND DUMP — TOTAL CPU USE BY THREAD IN FIRST DUMP

1020~ y

TOTAL INCREMENTAL CPU USE = TOTAL CPU USE IN SECOND DUMP —
TOTAL CPU USE IN FIRST DUMP

1030~

% CPU USE BY THREAD = INCREMENTAL CPU USE BY THREAD x 100
TOTAL INCREMENTAL CPU USE

1050

CPU TOP
CONSUMER

% CPU USE > 98% YES—»,

1070+

STALLED

% CPU USE = 0% THREAD

NO
1080~ v

NO CPU
PROBLEM

FIG. 10

U.S. Patent Aug. 30,2016 Sheet 11 of 13 US 9,430,355 B2

f1100

1110 FOR EACH THREAD DUMP AFTER THE FIRST:

A
COMPARE THE THREAD DUMP WITH THE
1120N pREVIOUS THREAD DUMP TO IDENTIFY
PROBLEMS

1140~

CONTINUE TO NEXT
THREAD DUMP

YES—»)

NO
1150~ v
FOR EACH PROBLEM IDENTIFIED BY THE
COMPARISON:
1160y v

IF THE PROBLEM WAS ALSO
IDENTIFIED IN THE PREVIOUS
COMPARISON, INCREASE THE

RELEVANCE RATING OF THE

PROBLEM

1170\ A

FOR EACH PROBLEM IDENTIFIED BY THE
PREVIOUS COMPARISON AND NOT
IDENTIFIED BY THE CURRENT
COMPARISON

1180, v

DECREASE THE RELEVANCE RATING
OF THE PROBLEM

FIG. 11

U.S. Patent Aug. 30,2016 Sheet 12 of 13

1210~ FOR EACH THREAD DUMP IN A SET OF
THREAD DUMPS:

_¢

1220 EXTRACT SELECTED DATA

l_l

1230N AGGREGATE EXTRACTED DATA

y

1240 BASED ON THE AGGREGATED DATA,
IDENTIFY A SET OF PROBLEMS

y

750 PRESENT INFORMATION ABOUT ONE
OR MORE PROBLEMS IN THE SET

FIG. 12

US 9,430,355 B2

/1 200

U.S. Patent

Aug. 30, 2016

1302~
1324~

Processor

Sheet 13 of 13

US 9,430,355 B2

/1 300

Instructions

1304~
1324

Main Memory

A

Graphics Display

~—1310

Instructions

A 4

1308~

Bus

Alphanumeric
Input Device

—1312

h 4

Cursor Control
Device

—1314

Storage Unit

1306~ Static Memory
1320 Network I_nterface
Device
N
y
1326~ Network

Machine-
readable Medium

Instructions

~1316

—1322

-1324

FIG. 13

.| Signal Generation

Device

—1318

US 9,430,355 B2

1
SYSTEM DIAGNOSTICS WITH THREAD
DUMP ANALYSIS

TECHNICAL FIELD

The subject matter disclosed herein generally relates to
the processing of data. Specifically, the present disclosure
addresses systems and methods for processing and present-
ing thread dumps and diagnosing systems.

BACKGROUND

Application developers use thread dumps to help identify
problems in applications being developed. The thread dump
often includes information about one or more threads of an
application. For example, the thread dump can indicate the
current method executing in each thread, along with a stack
trace for the thread. An application developer may use a tool
to view the thread dump and more easily navigate the
presented data.

Viewing tools present a number of options to users. A user
can select a dump to view from a list of available dumps.
After loading a selected dump, information for each thread
can be presented in a table. Alternative views may also be
available, such as a view of total memory allocation orga-
nized by the type of object consuming the memory.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments are illustrated by way of example and
not limitation in the figures of the accompanying drawings.

FIG. 1 is a network diagram illustrating a network envi-
ronment suitable for generating and presenting system diag-
nostics with thread dump analysis, according to some
example embodiments.

FIG. 2 is a block diagram of a server machine, according
to some example embodiments, suitable for generating and
presenting system diagnostics with thread dump analysis.

FIG. 3 is a block diagram of a user device, according to
some example embodiments, suitable for generating and
presenting system diagnostics with thread dump analysis.

FIG. 4 is a user interface diagram, according to some
example embodiments, suitable for presenting system diag-
nostics with thread dump analysis.

FIG. 5 is a user interface diagram, according to some
example embodiments, suitable for presenting system diag-
nostics with thread dump analysis.

FIG. 6 is a table of relevance ratings, according to some
example embodiments, suitable for generating and present-
ing system diagnostics with thread dump analysis.

FIG. 7 is a flowchart illustrating an example method,
according to some example embodiments, of devices per-
forming various operations to generate and present system
diagnostics with thread dump analysis.

FIG. 8 is a flowchart illustrating an example method,
according to some example embodiments, of devices per-
forming various operations to generate and present system
diagnostics with thread dump analysis.

FIG. 9 is a flowchart illustrating more detailed operations
of an example method to implement operation 730 of FIG.
7, according to some example embodiments, of devices
performing various operations to generate and present sys-
tem diagnostics with thread dump analysis.

FIG. 10 is a flowchart illustrating more detailed opera-
tions of an example method to implement operation 940 of
FIG. 9, according to some example embodiments, of devices

10

25

30

40

45

55

2

performing various operations to generate and present sys-
tem diagnostics with thread dump analysis.

FIG. 11 is a flowchart illustrating an example method,
according to some example embodiments, of devices per-
forming various operations to generate and present system
diagnostics with thread dump analysis.

FIG. 12 is a flowchart illustrating an example method,
according to some example embodiments, of devices per-
forming various operations to generate and present system
diagnostics with thread dump analysis.

FIG. 13 is a block diagram illustrating components of a
machine, according to some example embodiments, for
performing any of the methodologies described herein.

DETAILED DESCRIPTION

Example methods and systems are directed to system
diagnostics with thread dump analysis. Examples merely
typify possible variations. Unless explicitly stated other-
wise, components and functions are optional and may be
combined or subdivided, and operations may vary in
sequence or be combined or subdivided. In the following
description, for purposes of explanation, numerous specific
details are set forth to provide a thorough understanding of
example embodiments. It will be evident to one skilled in the
art, however, that the present subject matter may be prac-
ticed without these specific details.

A thread dump analysis tool can analyze a series of thread
dumps and present aggregate data for each thread dump. For
example, the time of the dump, the number of threads in the
dump, the total memory usage by all threads in the dump,
and so on. In addition to or instead of these absolute data,
relative data based on changes between sequential dumps
can be presented. This includes, for example, the amount of
CPU time consumed in the time between two dumps, the
amount of file input/output (I/O) in the time between two
dumps, the amount of network 1/O in the time between two
dumps, the changes in thread states between two dumps, and
O on.

The thread dump analysis tool can present one or more
hints for potential problems in the application from which
the series of thread dumps is generated. The hints can be
generated based on relative values generated by analysis of
sequential dumps. For example, a hint indicating that socket
1/0 is not progressing may be generated based on a deter-
mination that a thread is reading from a port without actually
receiving data. The hints may be hints that could not be
generated by analysis of a single thread dump. For example,
merely observing that a thread is reading from a socket does
not indicate that socket 1/O is not progressing. Instead, the
determination is based on a measurement that the thread has
been reading for at least a certain period of time without
progress. Other hints may be hints that are enhanced by
analysis of multiple thread dumps, whose importance is
made clearer by appearance in multiple thread dumps, or
that are unchanged in detection, importance, or both, by the
use of multiple thread dumps.

The importance of each hint can be generated numeri-
cally, based on heuristics for each type of hint. The hints can
then be presented in order of importance. Additionally or
alternatively, hints below a certain threshold of importance
can be hidden. The importance of a hint can be represented
by a numeric relevance score, or a human-readable rel-
evance phrase, such as “Very High Relevance.”

FIG. 1 is a network diagram illustrating a network envi-
ronment 100 suitable for generating and presenting system
diagnostics with thread dump analysis, according to some

US 9,430,355 B2

3

example embodiments. The network environment 100
includes a server machine 110, a database 115, and devices
130 and 150, all communicatively coupled to each other via
a network 190. The server machine 110 and the database 115
may collectively comprise a cloud-based system 105
capable of responding to client requests from devices 130
and 150. The server machine 110 and the devices 130 and
150 may each be implemented in a computer system, in
whole or in part, as described below with respect to FIG. 13.

Also shown in FIG. 1 are users 132 and 152. One or both
of the users 132 and 152 may be a human user, a machine
user (e.g., a computer configured by a software program to
interact with the device 130), or any suitable combination
thereof (e.g., a human assisted by a machine or a machine
supervised by a human). The user 132 is not part of the
network environment 100, but is associated with the device
130 and may be a user of the device 130. For example, the
device 130 may be a desktop computer, a vehicle computer,
a tablet computer, a navigational device, a portable media
device, or a smart phone belonging to the user 132. Like-
wise, the user 152 is not part of the network environment
100, but is associated with the device 150. As an example,
the device 150 may be a desktop computer, a vehicle
computer, a tablet computer, a navigational device, a por-
table media device, or a smart phone belonging to the user
152.

Any of the machines, databases, or devices shown in FIG.
1 may be implemented in a general-purpose computer
modified (e.g., configured or programmed) by software to be
a special-purpose computer to perform the functions
described herein for that machine, database, or device. For
example, a computer system able to implement any one or
more of the methodologies described herein is discussed
below with respect to FIG. 13. As used herein, a “database”
is a data storage resource and may store data structured as a
text file, a table, a spreadsheet, a relational database (e.g., an
object-relational database), a triple store, a hierarchical data
store, or any suitable combination thereof. The database may
be an in-memory database. The in-memory database may be
capable of much higher performance than a disk-based
database. Moreover, any two or more of the machines,
databases, or devices illustrated in FIG. 1 may be combined
into a single machine, and the functions described herein for
any single machine, database, or device may be subdivided
among multiple machines, databases, or devices.

The network 190 may be any network that enables
communication between or among machines, databases, and
devices (e.g., the server machine 110 and the device 130).
Accordingly, the network 190 may be a wired network, a
wireless network (e.g., a mobile or cellular network), or any
suitable combination thereof. The network 190 may include
one or more portions that constitute a private network, a
public network (e.g., the Internet), or any suitable combi-
nation thereof.

FIG. 2 is a block diagram illustrating components of the
server machine 110, according to some example embodi-
ments, suitable for generating and presenting system diag-
nostics with thread dump analysis. The server machine 110
is shown as including a communication module 210, a dump
module 220, an application module 230, a troubleshooter
module 240, and a database module 250, all configured to
communicate with each other (e.g., via a bus, shared
memory, or a switch). Any one or more of the modules
described herein may be implemented using hardware (e.g.,
a processor of a machine) or a combination of hardware and
software. For example, any module described herein may
configure a processor to perform the operations described

10

15

20

25

30

35

40

45

50

55

60

65

4

herein for that module. Moreover, any two or more of these
modules may be combined into a single module, and the
functions described herein for a single module may be
subdivided among multiple modules. Furthermore, accord-
ing to various example embodiments, modules described
herein as being implemented within a single machine, data-
base, or device may be distributed across multiple machines,
databases, or devices.

The operations of the modules 210-250 are discussed in
more detail below in the discussion of FIGS. 4-11. The
communication module 210 receives requests to generate
dumps, to analyze existing dumps, or both. The request to
generate dumps contains one or more of the following: a
number of thread dumps to be generated, a period of time to
delay between each successive thread dump, and a time
delay before the generation of the first thread dump.

The dump module 220 generates thread dumps for an
application run by an application module 230. The dump
module 220 and the application module 230 may be a single
module. For example, a Java virtual machine (JVM) that
runs an application may also generate the thread dump for
the application. The dump module 220 and the application
module 230 may be separate modules. For example, a
separate software or hardware tool can be used to take a
snapshot of data stored in memory (e.g., random access
memory (RAM), solid state memory, hard disk memory,
etc.) and generate a thread dump for the application being
analyzed. The generated thread dumps may be stored in a
database by the database module 250.

A thread dump contains information for one or more
threads of an application, and may also contain additional
information for the application itself. Information for a
single thread includes one or more of the following: an
identifier, a name, a priority, a scheduler state (e.g., sleeping,
running, blocked, or waiting), and a stack trace. The infor-
mation provided for the thread is current as of the time of the
thread dump. A stack trace for a thread can include the called
methods and lock object information.

The thread dump may also include additional information
for the thread, such as the total CPU time the thread has
consumed, the elapsed time the thread has been running, the
total amount of memory allocated by the thread (e.g., the
total number of bytes allocated in the heap), the number of
files opened by the thread, the number of sockets opened by
the thread, and the number of bytes read and written to each
file or socket. Additionally, the thread dump may indicate
the current file or socket being accessed if the stack trace
shows that the thread is currently performing a file or
network-related operation, respectively.

The troubleshooter module 240 analyzes the generated
dumps. The communication module 210 can respond to a
request for dump analysis by communicating the results of
the analysis. For example, the analysis may be transmitted
over a network or presented on a user interface.

FIG. 3 is a block diagram illustrating components of the
user device 130 or 150, according to some example embodi-
ments, suitable for generating and presenting system diag-
nostics with thread dump analysis. The user device 130 or
150 is shown as including a communication module 310, a
dump module 320, an application module 330, a trouble-
shooter module 340, a database module 350, and a user
interface module 360 all configured to communicate with
each other (e.g., via a bus, shared memory, or a switch).
Each module 310-350 may be implemented in a manner
similar to the corresponding module 210-250, as described
above with respect to FIG. 2.

US 9,430,355 B2

5

The user interface module 360 presents an interactive user
interface to a user of the device 130 or 150. Example user
interface diagrams are shown in FIG. 4 and FIG. 5, but other
interfaces may also be presented by the device 130 or 150.
The user interface may be presented on a web browser, from
a dedicated application, or from within a component of a
larger application.

FIG. 4 is a user interface diagram 400, according to some
example embodiments, suitable for presenting system diag-
nostics with thread dump analysis. The user interface dia-
gram 400 includes a title 410, summary data 420-440, a
timing distribution bar 445, and a table 450 of data regarding
the dumps including columns 455-490 with name, time-
stamp, relative CPU time, relative file I/O, relative network
1/O, number of threads, thread state, and alert data for each
thread dump. The user interface diagram 400 corresponds to
a user interface presented by the user interface module 360,
in some example embodiments.

The title 410 indicates the date and time over which the
thread dumps were taken. The summary data 420 indicates
that the number of thread dumps being analyzed is 10. The
summary data 430 indicates that the date and time of the first
thread dump is May 28, 2014 at 9:31:39 AM CEST. The
summary data 440 indicates that the date and time of the last
thread dump in the set is May 28, 2014 at 9:41:36 AM CEST.
The timing distribution bar 445 shows the relative time at
which each of the thread dumps in the set was created. As
shown in FIG. 4, the thread dumps were generated at even
intervals over 10 minutes. In some example embodiments,
thread dumps are automatically generated at evenly spaced
intervals in response to a user request that identifies the
application, a total number of dumps to generate, and a time
period over which to generate the dumps. In other example
embodiments, thread dumps are individually generated in
response to user commands.

The table 450 includes information for each thread dump
in the set. The data in each of the columns 455-490 includes
a header indicating the data being shown, along with cor-
responding data for one of the thread dumps in the set. For
example, the third row of the table 450 shows that the name
of the thread dump is “Dump 2” in the thread dump column
455, that the date/time of the thread dump is May 28, 2014
9:33:55 AM in the timestamp column 460, that the amount
of CPU time consumed since the previous thread dump is
78.8 ms in the CPU time column 465, that no file I/O
occurred since the previous dump in the file I/O column 470,
that 231 kb of data were read or written since the previous
dump in the network I/O column 475, that 358 threads are
running in the thread column 480, that most threads are in
the running state in the thread states column 485, and that no
alert is generated in the alert column 490.

The thread states column 485 shows a graphical repre-
sentation of the distribution of thread states for each thread
dump. For example, one color or fill pattern can be used to
indicate a running state, another color or fill pattern used to
indicate a waiting state, and so on. In this way, an application
developer can quickly see the change in thread states over
time, possibly aiding the developer in homing in on a
particular time at which a problem began.

FIG. 5 is a user interface diagram 500, according to some
example embodiments, suitable for presenting system diag-
nostics with thread dump analysis. The user interface dia-
gram 500 includes a section title 505 for hints with very high
relevance, a section title 545 for hints with high relevance,
a section title 555 for hints with low relevance, hints 510,
515, 540, 550, and 560, and information 520-535 regarding
the hint 515. The user interface diagram 500 corresponds to

10

15

20

25

30

35

40

45

50

55

60

65

6

a user interface presented by the user interface module 360,
in some example embodiments.

The section title 505 indicates that the hints below are
those determined to be of very high relevance. The hint 510
is for a socket that is not making I/O progress. A plus sign
is shown adjacent to the hint 510, indicating that the hint 510
can be expanded to show additional information. The hint
515 is also for a socket that is not making I/O progress. A
minus sign is shown adjacent to the hint 515, indicating that
the hint 515 is expanded to show additional information and
can be collapsed to hide the additional information.

The information 520 identifies the thread which is expe-
riencing socket /O without progress, the machine and port
of the socket, the amount of time the 1/O has failed to
progress, and the percentage of the thread’s running time
spent on the unproductive I/O. The name of the thread is
underlined, indicating that it can be activated to provide
more information regarding the thread. For example, the
name of the thread may be a hyperlink operable to cause the
presentation of thread data in a pop-up window. The infor-
mation 525 provides a suggestion as to a possible cause of
the problem. The information 525 may be retrieved from a
database based on the type of problem identified, data for the
thread, data for the problem, or any suitable combination
thereof. The information 530 includes the thread’s stack,
showing the method running at the time of the thread dump.
The information 535 indicates that more methods of the
stack are available and may be operable to show some or all
of the additional methods.

The hints 540, 550, and 560 are for a method hotspot, a
passive thread, and a lock contention, respectively. Each of
the hints 540, 550, and 560 is shown with a plus sign,
indicating that more information is available. The hints 540,
550, and 560 also include a short description of the thread
status.

FIG. 6 is a table 600 of relevance ratings, according to
some example embodiments, suitable for generating and
presenting system diagnostics with thread dump analysis.
When a hint is generated, a numeric value to the relevance
of the hint can be generated based on information about the
thread and the hint. For example, a certain type of hint
related to a critical issue may have a minimum relevance of
0.4 while another type of hint related to an issue that is rarely
key may have a maximum relevance of 0.6. Similarly, for a
particular hint, the relevance may be determined based on
the particular information about the thread causing the hint.
For example, if a hint is generated for socket /O without
progress, the relevance can increase in proportion to the
length of time for which the socket has failed to make
progress. The table 600 shows numeric relevance ratings in
the range of 0-1, but other ranges may also be used. The text
relevance rating can be used for presentation to a user.
Additionally or alternatively, the numeric relevance rating
can be discarded after calculation and an identifier for the
text relevance rating stored.

FIG. 7 is a flowchart illustrating operations of the server
110 in performing a method 700 of generating and present-
ing system diagnostics with thread dump analysis, according
to some example embodiments. Operations in the method
700 may be performed by the server 110, using modules
described above with respect to FIG. 2. As shown in FIG. 7,
the method 700 includes operations 710, 720, 730, 740, and
750.

In operation 710, the troubleshooter module 240 accesses
a first thread dump for an application via the database
module 250. In some example embodiments, the thread
dump is a binary or human-readable data file.

US 9,430,355 B2

7

The troubleshooter module 240, in operation 720,
accesses a second thread dump for the application via the
database module 250. The second thread dump may have
been generated by the same run of the application at a later
time than the first thread dump.

Having accessed the two thread dumps, the troubleshooter
module 240 compares the second thread dump with the first
thread dump in operation 730. The comparison of the two
thread dumps may include comparison of aggregate data
(e.g., total number of threads running or total amount of
memory consumed), thread-level data (e.g., stack traces for
a particular thread in both thread dumps, memory consump-
tion by a particular thread in both thread dumps), or both. An
example implementation of the operation 730 is discussed
below, with respect to FIG. 9 and FIG. 10.

A problem is identified by the troubleshooter module 240,
in operation 740, based on a result of the comparison
performed in operation 730. For example, the comparison
may reveal that a thread’s stack trace is unchanged and that
it has consumed no CPU cycles in the period between the
two thread dumps. Based on these results, the passive state
of the thread can be identified as a problem.

Information about the problem identified in operation 740
is presented to the user (operation 750). For example, any or
all of the following may be presented: the state of a thread
for which the problem was detected can be presented, a
recommendation for a solution to the problem, ways to
gather more information regarding the problem, or other
relevant or useful information.

Addressing operations 730-750 together, below are sev-
eral types of hints that may be generated and presented based
on identified problems from the comparison of two thread
dumps.

A hint that socket 1/0 is without progress may be made
based on a determination that a thread is reading from or
writing to a socket without any progress over a period of
time (e.g., over a period of time exceeding a predetermined
threshold). Progress may be measured by the number of
bytes transferred, the amount of CPU time consumed, or
both. The information presented can include the host name
and port number of the socket. The relevance of the hint can
be based on the amount of time for which no progress has
occurred. A suggestion that the user perform a network /O
analysis for the thread may be made based on the determi-
nation that socket /O without progress is occurring.

A hint that a thread has entered a passive state may be
made based on a determination that the thread is not con-
suming any resources over a period of time. For example, if
the thread is not consuming any CPU time, allocating any
memory, or performing any I/O, the thread may be found to
be in a passive state. A suggestion that the user check to see
if the CPUs are overloaded with operating system-level tools
may be made based on the determination that a thread is in
a passive state. The relevance factor can be based on the
amount of time that the thread has been passive. Addition-
ally or alternatively, a suggestion that the user attach a native
profiler to check if the thread execution is locked (e.g.,
within the JVM) may be made.

A hint that a thread is a top consumer may be made based
on a determination that the thread consumes a resource at a
much greater rate than other threads in the application. For
example, the thread may consume a greater amount of CPU
cycles, perform a greater amount of socket 1/O, perform a
greater amount of file /O, consume a greater amount of heap
space, or any suitable combination of these. In some
example embodiments, the mean and standard deviation of
consumption of the resource by all threads is calculated and

15

25

40

45

8

the top consumers are identified by exceeding a predeter-
mined number of standard deviations above the mean. The
relevance can be based on the degree to which the top
consumer exceeds the mean. In other example embodiments,
the thread that consumes the most of each type of resource
is identified as a top consumer of that resource. A suggestion
that the user perform a performance hotspot analysis on the
thread, perform network /O analysis, file /O analysis,
allocation analysis, or any suitable combination thereof may
be made based on the type of resource or resources for which
the thread is a top consumer.

A hint that a thread is blocked may be made based on a
determination that a thread is blocked by other threads over
a significant portion of the elapsed time. Information pre-
sented can include information regarding the lock objects on
which the thread is blocked and the threads owning those
lock objects. The relevance can be based on the percentage
of time that the thread is blocked. A suggestion that the user
perform a synchronization analysis may be based on the
determination that the thread is blocked.

A hint regarding lock contention may be generated based
on a determination that a high total blocking time of threads
is spent waiting for a lock object. The hint may indicate the
thread currently holding the lock object. The relevance can
be based on the percentage of blocking time attributable to
the lock object. A suggestion that the user perform a syn-
chronization analysis may be based on the determination
that the lock is under contention.

A hint that an application is suffering from a resource leak
may be based on a determination that consumption of a
resource is growing. For example, the number of threads,
number of open sockets, number of open files, total amount
of memory allocated, and total amount of CPU cycles
consumed can be monitored. In some example embodi-
ments, a linear approximation is made for the consumption
of the resource over time, based on a set of thread dumps.
The relevance can be based on the gradient of the resulting
line. A suggestion that the user perform an analysis of the
resource that is leaking may be based on the determination
that a resource leak is present. For example, a performance
hotspot analysis can be recommended for growing CPU
consumption, network I/O analysis can be recommended for
increasing numbers of open sockets, file /O analysis can be
recommended for increasing numbers of open files, and
allocation analysis can be recommended for increasing
memory consumption.

A hint that an application has a method hotspot may be
based on a determination that the number of times a par-
ticular method is run exceeds a threshold. The threshold can
be based on a frequency analysis. For example, a statistical
analysis of all methods run by all threads during the sample
period can generate a mean frequency and standard devia-
tion for all methods. If the frequency for a particular method
exceeds the mean by a predetermined number of standard
deviations, that method can be identified as a method
hotspot. The relevance can be based on the amount that the
method exceeds the mean. A suggestion that the user per-
form a performance hotspot trace for the method can be
generated based on the determination that the method is a
method hotspot for the application.

A hint that the application suffers a livelock may be based
on a determination that one or more threads are consuming
CPU cycles without performing productive work. The deter-
mination that a thread is livelocked can be made based on a
high CPU consumption (e.g., within a predetermined thresh-
old of the maximum possible for the elapsed time) and a
strong method locality (e.g., the stack trace for the thread in

US 9,430,355 B2

9

sequential dumps is unchanging or only changes in a few of
the topmost frames). The relevance can be based on the CPU
consumption and degree of method locality. A suggestion
that the user perform hotspot analysis, method parameter
analysis, or both can be generated based on the determina-
tion that the application has one or more livelocked threads.

A hint that the application is deadlocked may be based on
a determination that a set of threads transitively block each
other. The information presented to the user may include
identifying all threads that are part of the deadlock cycle, all
threads that are indirectly blocked by the deadlock but are
not part of the cycle, or both. The relevance is always high.
A suggestion that the user examine the design of the dead-
locked code can be generated based on the determination
that the application is deadlocked.

FIG. 8 is a flowchart illustrating operations of a method
800 of generating and presenting system diagnostics with
thread dump analysis, according to some example embodi-
ments. Operations in the method 800 are described as being
performed by the server 110, using modules described above
with respect to FIG. 2, by way of example only. As shown
in FIG. 8, the method 800 includes operations 710, 720, 730,
740, 810, 820, 830, 840, and 850. Operations 710, 720, 730,
and 740 are described above with respect to FIG. 7.

In operation 810, the troubleshooter module 240 begins a
loop to handle the processing of each problem identified in
operation 740. The operations 820-850 are performed for
each identified problem.

The troubleshooter module 240 accesses a relevance
rating for the problem (e.g., via the database module 250),
in the operation 820. The relevance rating may have been
determined during the operation 740, at the time the problem
was identified. Alternatively, a flag indicating the presence
of the problem may have been set during the operation 740
and the determination of the relevance rating of the problem
may be created during the operation 820.

The troubleshooter module 240 compares the relevance
rating to a threshold (operation 830) to determine if infor-
mation about the problem should be presented (operation
840) or not (operation 850). The threshold may be numeric
(e.g., all problems with a relevance rating of at least 0.5 are
presented) or category-based (e.g., all problems with at least
a High Relevance are presented). The threshold may be
automatically determined by the system, or selected by the
user (e.g., by using a graphical user interface presented by
the user interface module 360 to cause selected options to be
stored in a database by the database module 250 or 350).

FIG. 9 is a flowchart illustrating more detailed operations
of'a method to implement operation 730 of FIG. 7, according
to some example embodiments. Operations in the method of
FIG. 9 are described as being performed by the server 110,
using modules described above with respect to FIG. 2, by
way of example only. As shown in FIG. 9, the method of
implementing the operation 730 includes operations 910,
920, 930, 940, and 950.

In operation 910 a loop is begun to handle the processing
of each thread in the second thread dump. The operations
920-950 are performed, as appropriate, for each identified
thread.

The troubleshooter module 240 makes a determination as
to whether the first thread dump contains a thread corre-
sponding to the identified thread (operation 920). If no
corresponding thread is found, the thread is identified as a
new thread (operation 930). If a corresponding thread is
found, processing of the identified thread continues in opera-
tion 940.

25

30

40

45

55

60

10

Having found two corresponding threads, the trouble-
shooter module 240 compares the thread in the second
thread dump with the corresponding thread in the first thread
dump (operation 940). For example, the stacks may be
compared, the amount of CPU consumption may be com-
pared, the amount of memory allocation may be compared,
the amount of file /O may be compared, and so on. FIG. 10,
discussed below, shows one example implementation of the
operation 940.

The troubleshooter module 240 marks each thread in the
first thread dump not corresponding to a thread in the second
thread dump as having died between the two thread dumps,
in operation 950. For example, a data structure used to store
information for each thread can be updated to reflect the fact
that the thread died, the last known live time for the thread,
an identifier for the first thread dump in which the thread
does not appear, or any suitable combination thereof. The
data structure can include a thread identifier, pointers to
information for the thread in each of the thread dumps,
various status indicators (e.g., whether the thread is dead or
alive in the latest thread dump, whether any hints have been
generated for the thread, and so on), data for presentation in
a user interface, or any suitable combination thereof.

FIG. 10 is a flowchart illustrating more detailed opera-
tions of a method to implement operation 940 of FIG. 9,
according to some example embodiments. Operations in the
method of FIG. 10 are described as being performed by the
server 110, using modules described above with respect to
FIG. 2, by way of example. The shown implementation of
operation 940 addresses identification of CPU use problems,
but modification to address identification of other problems
is straightforward. As shown in FIG. 10, the method of
implementing the operation 940 includes operations 1010,
1020, 1030, 1040, 1050, 1060, 1070, and 1080.

The troubleshooter module 240 determines the incremen-
tal CPU use by a thread by subtracting the total CPU use by
the thread in an earlier thread dump from the total CPU use
by the thread in a later thread dump (operation 1010). For
example, if the total CPU consumption by the thread in the
second thread dump is 5 seconds and the total CPU con-
sumption by the thread in the first thread dump is 4 seconds,
the incremental CPU use by the thread in the interim is 1
second.

In operation 1020, the total incremental CPU use by the
application is determined by subtracting the total CPU use
by the application in the earlier thread dump from the total
CPU use by the application in the later thread dump. For
example, if the total CPU use by the application in the
second thread dump is 60 seconds and the total CPU
consumption by the thread in the first thread dump is 45
seconds, the incremental CPU use by the application in the
interim is 15 seconds.

The percentage of incremental CPU use attributable to the
thread is determined by dividing the incremental CPU use of
the thread by the incremental CPU use of the application,
and multiplying by 100 (operation 1030). Continuing with
the example case, the percentage of incremental CPU use for
the thread is about 6.7%.

In operation 1040, the percentage of incremental CPU use
attributable to the thread is compared to a threshold (e.g.,
98%), to determine if the thread is a CPU top consumer
(operation 1050) or not. If not, operation 1060 is performed.
In the example case, 6.7% is less than the threshold, so the
thread is not marked as a top consumer.

After determining that the percentage of incremental CPU
use falls below the top consumer threshold, the percentage
of incremental CPU use attributable to thread is compared

US 9,430,355 B2

11

(operation 1060) to a stall threshold (e.g., 0%), to determine
if the thread is stalled (operation 1070) or not. In the
example case, 6.7% is greater than the threshold, so the
thread is not marked as stalled. Accordingly, in the example
case, no CPU problem is identified for the thread (operation
1080).

FIG. 11 is a flowchart illustrating a method 1100 to
generate and present system diagnostics with thread dump
analysis, according to some example embodiments. Opera-
tions in the method 1100 may be performed by the server
110, using modules described above with respect to FIG. 2.
As shown in FIG. 11, the method 1100 includes operations
1110, 1120, 1130, 1140, 1150, 1160, 1170, and 1180.

A loop is begun to iterate over a series of thread dumps,
beginning with the second, in operation 1110. For each such
thread dump, operations 1120-1180 are performed, as appro-
priate.

The thread dump is compared with the previous thread
dump in operation 1120. For example, operations 710-740 of
the method 700 may be used to compare two thread dumps
and identify a set of problems.

The first comparison is treated differently than subsequent
comparisons (operation 1130). For the first comparison, the
loop continues to the next thread dump after the comparison
(operation 1140). For subsequent comparisons, processing
continues with operation 1150.

In operation 1150, processing loops over the set of prob-
lems identified by the current comparison. Accessing the set
of problems identified in the previous comparison, a deter-
mination is made as to whether each identified problem was
also identified by the previous comparison. If the identified
problem was identified by both comparisons, the relevance
rating for the problem is increased (operation 1160).

In operation 1170, processing loops over the set of prob-
lems identified by the previous comparison and not identi-
fied by the current comparison. For each such problem, the
relevance rating of the problem is decreased (operation
1180).

FIG. 12 is a flowchart illustrating a method 1200 to
generate and present system diagnostics with thread dump
analysis, according to some example embodiments. Opera-
tions in the method 1200 may be performed by the server
110, using modules described above with respect to FIG. 2.
As shown in FIG. 12, the method 1200 includes operations
1210, 1220, 1230, 1240, and 750. The operation 750 is
described above with respect to FIG. 7.

The method loops over a set of thread dumps (operation
1210) to extract selected data (operation 1220). For
example, the incremental CPU consumption by each thread
can be extracted, the amount of memory consumed by the
application can be extracted, or other data can be extracted.

The extracted data is then aggregated, in operation 1230.
For example, the total CPU consumption by each thread
over the time period spanned by the thread dumps can be
determined as an aggregate value. Similarly, the rate of
change of memory consumption over the time period
spanned by the thread dumps can be determined as an
aggregate value.

In operation 1240, a set of problems is identified based on
the aggregated data. For example, if the total CPU consump-
tion by a thread exceeds a threshold, the thread may be
identified as a CPU top consumer. As another example, if the
memory consumption of the application is increasing at a
rate that exceeds a threshold, a memory leak may be
identified.

10

15

20

25

30

35

40

45

50

55

60

65

12

In operation 750, information about one or more problems
of the set of identified problems is presented to the user, as
described in more detail above, with respect to FIG. 7.

According to various example embodiments, one or more
of the methodologies described herein may facilitate iden-
tification and solution of problems in systems running
software applications. Moreover, one or more of the meth-
odologies described herein may facilitate the efficient use of
computing resources. According to various example
embodiments, hints provided by the system diagnostics with
thread dump analysis may allow a developer or system
administrator to identify problems without running an entire
suite of diagnostic tools, maximizing the impact of devel-
opment, maintenance, or testing efforts.

When these effects are considered in aggregate, one or
more of the methodologies described herein may obviate a
need for certain efforts or resources that otherwise would be
involved in system diagnostics. Computing resources used
by one or more machines, databases, or devices (e.g., within
the network environment 100) may similarly be reduced.
Examples of such computing resources include processor
cycles, network traffic, memory usage, data storage capacity,
power consumption, and cooling capacity.

FIG. 13 is a block diagram illustrating components of a
machine 1300, according to some example embodiments,
able to read instructions from a machine-readable medium
(e.g., a machine-readable storage medium, a computer-
readable storage medium, or any suitable combination
thereof) and perform any one or more of the methodologies
discussed herein, in whole or in part. Specifically, FIG. 13
shows a diagrammatic representation of the machine 1300 in
the example form of a computer system and within which
instructions 1324 (e.g., software, a program, an application,
an applet, an app, or other executable code) for causing the
machine 1300 to perform any one or more of the method-
ologies discussed herein may be executed, in whole or in
part. In alternative embodiments, the machine 1300 operates
as a standalone device or may be connected (e.g., net-
worked) to other machines. In a networked deployment, the
machine 1300 may operate in the capacity of a server
machine or a client machine in a server-client network
environment, or as a peer machine in a distributed (e.g.,
peer-to-peer) network environment. The machine 1300 may
be a server computer, a client computer, a personal computer
(PC), a tablet computer, a laptop computer, a netbook, a
set-top box (STB), a personal digital assistant (PDA), a
cellular telephone, a smartphone, a web appliance, a network
router, a network switch, a network bridge, or any machine
capable of executing the instructions 1324, sequentially or
otherwise, that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include a collection of
machines that individually or jointly execute the instructions
1324 to perform all or part of any one or more of the
methodologies discussed herein.

The machine 1300 includes a processor 1302 (e.g., a
central processing unit (CPU), a graphics processing unit
(GPU), a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a radio-frequency inte-
grated circuit (RFIC), or any suitable combination thereof),
a main memory 1304, and a static memory 1306, which are
configured to communicate with each other via a bus 1308.
The machine 1300 may further include a graphics display
1310 (e.g., a plasma display panel (PDP), a light emitting
diode (LED) display, a liquid crystal display (LCD), a
projector, or a cathode ray tube (CRT)). The machine 1300
may also include an alphanumeric input device 1312 (e.g.,

US 9,430,355 B2

13

a keyboard), a cursor control device 1314 (e.g., a mouse, a
touchpad, a trackball, a joystick, a motion sensor, or other
pointing instrument), a storage unit 1316, a signal generation
device 1318 (e.g., a speaker), and a network interface device
1320.

The storage unit 1316 includes a machine-readable
medium 1322 on which is stored the instructions 1324
embodying any one or more of the methodologies or func-
tions described herein. The instructions 1324 may also
reside, completely or at least partially, within the main
memory 1304, within the processor 1302 (e.g., within the
processor’s cache memory), or both, during execution
thereof by the machine 1300. Accordingly, the main memory
1304 and the processor 1302 may be considered as machine-
readable media. The instructions 1324 may be transmitted or
received over a network 1326 (e.g., network 190) via the
network interface device 1320.

As used herein, the term “memory” refers to a machine-
readable medium able to store data temporarily or perma-
nently and may be taken to include, but not be limited to,
random-access memory (RAM), read-only memory (ROM),
buffer memory, flash memory, and cache memory. While the
machine-readable medium 1322 is shown in an example
embodiment to be a single medium, the term “machine-
readable medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, or associated caches and servers) able to store
instructions. The term “machine-readable medium” shall
also be taken to include any medium, or combination of
multiple media, that is capable of storing instructions for
execution by a machine (e.g., machine 1300), such that the
instructions, when executed by one or more processors of
the machine (e.g., processor 1302), cause the machine to
perform any one or more of the methodologies described
herein. Accordingly, a “machine-readable medium” refers to
a single storage apparatus or device, as well as “cloud-
based” storage systems or storage networks that include
multiple storage apparatus or devices. The term “machine-
readable medium” shall accordingly be taken to include, but
not be limited to, one or more data repositories in the form
of a solid-state memory, an optical medium, a magnetic
medium, or any suitable combination thereof.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed in the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) or hardware modules. A “hardware module” is
a tangible unit capable of performing certain operations and
may be configured or arranged in a certain physical manner.
In various example embodiments, one or more computer
systems (e.g., a standalone computer system, a client com-
puter system, or a server computer system) or one or more
hardware modules of a computer system (e.g., a processor or

10

15

20

25

30

35

40

45

50

55

60

65

14

a group of processors) may be configured by software (e.g.,
an application or application portion) as a hardware module
that operates to perform certain operations as described
herein.

In some embodiments, a hardware module may be imple-
mented mechanically, electronically, or any suitable combi-
nation thereof. For example, a hardware module may
include dedicated circuitry or logic that is permanently
configured to perform certain operations. For example, a
hardware module may be a special-purpose processor, such
as a field programmable gate array (FPGA) or an ASIC. A
hardware module may also include programmable logic or
circuitry that is temporarily configured by software to per-
form certain operations. For example, a hardware module
may include software encompassed within a general-pur-
pose processor or other programmable processor. It will be
appreciated that the decision to implement a hardware
module mechanically, in dedicated and permanently config-
ured circuitry, or in temporarily configured circuitry (e.g.,
configured by software) may be driven by cost and time
considerations.

Accordingly, the phrase “hardware module” should be
understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate in a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering embodi-
ments in which hardware modules are temporarily config-
ured (e.g., programmed), each of the hardware modules need
not be configured or instantiated at any one instance in time.
For example, where a hardware module comprises a general-
purpose processor configured by software to become a
special-purpose processor, the general-purpose processor
may be configured as respectively different special-purpose
processors (e.g., comprising different hardware modules) at
different times. Software may accordingly configure a pro-
cessor, for example, to constitute a particular hardware
module at one instance of time and to constitute a different
hardware module at a different instance of time.

Hardware modules can provide information to, and
receive information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware modules. In embodiments in which multiple hard-
ware modules are configured or instantiated at different
times, communications between such hardware modules
may be achieved, for example, through the storage and
retrieval of information in memory structures to which the
multiple hardware modules have access. For example, one
hardware module may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware module may
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware modules may also
initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented

US 9,430,355 B2

15

modules that operate to perform one or more operations or
functions described herein. As used herein, “processor-
implemented module” refers to a hardware module imple-
mented using one or more processors.

Similarly, the methods described herein may be at least
partially processor-implemented, a processor being an
example of hardware. For example, at least some of the
operations of a method may be performed by one or more
processors or processor-implemented modules. Moreover,
the one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). For
example, at least some of the operations may be performed
by a group of computers (as examples of machines including
processors), with these operations being accessible via a
network (e.g., the Internet) and via one or more appropriate
interfaces (e.g., an application program interface (API)).

The performance of certain of the operations may be
distributed among the one or more processors, not only
residing within a single machine, but deployed across a
number of machines. In some example embodiments, the
one or more processors or processor-implemented modules
may be located in a single geographic location (e.g., within
a home environment, an office environment, or a server
farm). In other example embodiments, the one or more
processors or processor-implemented modules may be dis-
tributed across a number of geographic locations.

Some portions of the subject matter discussed herein may
be presented in terms of algorithms or symbolic represen-
tations of operations on data stored as bits or binary digital
signals within a machine memory (e.g., a computer
memory). Such algorithms or symbolic representations are
examples of techniques used by those of ordinary skill in the
data processing arts to convey the substance of their work to
others skilled in the art. As used herein, an “algorithm” is a
self-consistent sequence of operations or similar processing
leading to a desired result. In this context, algorithms and
operations involve physical manipulation of physical quan-
tities. Typically, but not necessarily, such quantities may
take the form of electrical, magnetic, or optical signals
capable of being stored, accessed, transferred, combined,
compared, or otherwise manipulated by a machine. It is
convenient at times, principally for reasons of common
usage, to refer to such signals using words such as “data,”
“content,” “bits,” “values,” “elements,” “symbols,” “char-
acters,” “terms,” “‘numbers,” “numerals,” or the like. These
words, however, are merely convenient labels and are to be
associated with appropriate physical quantities.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a
computer) that manipulates or transforms data represented
as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or any suitable combination thereof), reg-
isters, or other machine components that receive, store,
transmit, or display information. Furthermore, unless spe-
cifically stated otherwise, the terms “a” or “an” are herein
used, as is common in patent documents, to include one or
more than one instance. Finally, as used herein, the con-
junction “or” refers to a non-exclusive “or,” unless specifi-
cally stated otherwise.

The following enumerated examples define various
example embodiments of methods, machine-readable
media, and systems (e.g., apparatus) discussed herein:

2 < 2 < 2 <

2 <

2 <

10

15

20

25

30

35

40

45

50

55

60

65

16
Example 1

A method comprising:

accessing a first thread dump from an execution of an
application;

accessing a second thread dump from the execution of the
application;

performing, by a processor of a machine, a comparison of
the second thread dump with the first thread dump;

based on the comparison, identifying a problem in the
execution of the application; and

causing a presentation of information about the identified
problem to a user.

Example 2

The method of example 1, further comprising:

based on the comparison, identifying a potential problem
in the execution of the application;

determining, for the identified problem and the potential
problem, a relevance value;

based on the relevance value for the potential problem
being below a threshold, not causing a presentation of
information about the potential problem to the user; and
wherein

the causing of the presentation of information about the
identified problem is based on the relevance value for
the identified problem being above the threshold.

Example 3

The method of example 1 or example 2, wherein the
identified problem is a deadlock.

Example 4
The method of any suitable one of examples 1-3, further
comprising:
accessing a third thread dump from the execution of the
application;

performing a comparison of the third thread dump with
the second thread dump; and wherein

the identifying of the problem in the execution in the
application is further based on the comparison of the
third thread dump with the second thread dump.

Example 5

The method of any suitable one of examples 1-4, wherein:

the first thread dump includes a first total CPU time
consumed by a thread;

the second thread dump includes a second total CPU time
consumed by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first total
CPU time and the second total CPU time.

Example 6

The method of any suitable one of examples 1-5, wherein:

the first thread dump includes a first number of bytes
allocated for a thread;

the second thread dump includes a second number of
bytes allocated for the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of bytes allocated and the second number of bytes
allocated.

US 9,430,355 B2

17
Example 7

The method of any suitable one of examples 1-6, wherein:

the first thread dump includes a first number of files
opened by a thread;

the second thread dump includes a second number of files
opened by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of files opened and the second number of files opened.

Example 8

The method of any suitable one of examples 1-7, wherein:

the first thread dump includes a first number of sockets
opened by a thread;

the second thread dump includes a second number of
sockets opened by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of sockets opened and the second number of sockets
opened.

Example 9

The method of any suitable one of examples 1-8, wherein:
the first thread dump includes a first number of bytes read
from a file by a thread;

the second thread dump includes a second number of
bytes read from the file by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of bytes and the second number of bytes read from the
file.

Example 10

The method of any suitable one of examples 1-9, wherein:

the first thread dump includes a first number of bytes
written to a socket by a thread;

the second thread dump includes a second number of
bytes written to the socket by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of bytes and the second number of bytes written to the
socket.

Example 11
The method of any suitable one of examples 1-10,
wherein:
the second thread dump was generated at a predetermined
interval after the first thread dump.

Example 12

The method of example 11, further comprising receiving
the predetermined interval from the user.

Example 13

The method of any suitable one of examples 1-12,
wherein the identified problem is a livelock.

5

10

15

20

25

30

35

40

50

55

18
Example 14

The method of any suitable one of examples 1-12,
wherein the identified problem is a stalled socket commu-
nication.

Example 15

A system comprising:
a database module, configured to:
access a first thread dump from an execution of an
application; and
access a second thread dump from the execution of the
application;
a troubleshooter module, configured to:
perform a comparison of the second thread dump with
the first thread dump; and
based on the comparison, identify a problem in the
execution of the application; and
a user interface module, configured to:
cause a presentation of information about the identified
problem to a user.

Example 16

The system of example 15, wherein:
the troubleshooter module is further configured to:
based on the comparison, identify a potential problem
in the execution of the application; and
determine, for the identified problem and the potential
problem, a probability of relevance; and
the user interface module is further configured to:
based on the probability of relevance for the potential
problem being below a threshold, not cause a pre-
sentation of information about the potential problem
to the user; and wherein
the causing of the presentation of information about the
identified problem by the user interface module is
based on the probability of relevance for the identified
problem being above the threshold.

Example 17

The system of example 15 or example 16, wherein the
identified problem is a deadlock.

Example 18

The system of any suitable one of examples 15-17,
wherein:
the database module is further configured to:
access a third thread dump from the execution of the
application; and
the troubleshooter module is further configured to:
perform a comparison of the third thread dump with the
second thread dump; and wherein
the identifying of the problem in the execution in the
application by the troubleshooter module is further
based on the comparison of the third thread dump with
the second thread dump.

Example 19
The system of any suitable one of examples 15-18,

wherein the database module and the troubleshooter module
are different modules.

US 9,430,355 B2

19
Example 20

A non-transitory machine-readable storage medium com-

prising instructions that, when executed by one or more
processors of a machine, cause the machine to perform
operations comprising:

is

accessing a first thread dump from an execution of an
application;

accessing a second thread dump from the execution of the
application;

performing, by a processor of a machine, a comparison of
the second thread dump with the first thread dump;

based on the comparison, identifying a problem in the
execution of the application; and

causing a presentation of information about the identified
problem to a user.

What is claimed is:

1. A method comprising:

accessing a first thread dump from an execution of an
application;

accessing a second thread dump from the execution of the
application;

performing, by a processor of a machine, a comparison of
the second thread dump with the first thread dump;

based on the comparison:
identifying a problem in the execution of the applica-

tion, and
identifying a potential problem in the execution of the
application;

determining, for each of the identified problem and the
potential problem, a relevance value;

based on the relevance value for the potential problem
being below a threshold, not causing a presentation of
information about the potential problem to a user; and

based on the relevance value for the identified problem
being above the threshold, causing a presentation of
information about the identified problem to the user.

2. The method of claim 1, wherein the identified problem

a deadlock.

3. The method of claim 1, further comprising:

accessing a third thread dump from the execution of the
application;

performing, by the processor of the machine, a compari-
son of the third thread dump with the second thread
dump; and wherein

the identifying of the problem in the execution in the
application is further based on the comparison of the
third thread dump with the second thread dump.

4. The method of claim 1, wherein:

the first thread dump includes a first total CPU time
consumed by a thread;

the second thread dump includes a second total CPU time
consumed by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first total
CPU time and the second total CPU time.

5. The method of claim 1, wherein:

the first thread dump includes a first number of bytes
allocated for a thread;

the second thread dump includes a second number of
bytes allocated for the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of bytes allocated and the second number of bytes
allocated.

10

15

20

25

30

35

40

45

50

55

60

65

20

6. The method of claim 1, wherein:

the first thread dump includes a first number of files
opened by a thread;

the second thread dump includes a second number of files
opened by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of files opened and the second number of files opened.

7. The method of claim 1, wherein:

the first thread dump includes a first number of sockets
opened by a thread;

the second thread dump includes a second number of
sockets opened by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of sockets opened and the second number of sockets
opened.

8. The method of claim 1, wherein:

the first thread dump includes a first number of bytes read
from a file by a thread;

the second thread dump includes a second number of
bytes read from the file by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of bytes and the second number of bytes read from the
file.

9. The method of claim 1, wherein:

the first thread dump includes a first number of bytes
written to a socket by a thread;

the second thread dump includes a second number of
bytes written to the socket by the thread; and

the comparison of the first thread dump with the second
thread dump includes a comparison of the first number
of bytes and the second number of bytes written to the
socket.

10. The method of claim 1, wherein:

the second thread dump was generated at a predetermined
interval after the first thread dump.

11. The method of claim 10, further comprising receiving

the predetermined interval from the user.

12. The method of claim 1, wherein the identified problem

is a livelock.

13. The method of claim 1, wherein the identified problem

is a stalled socket communication.

14. A system comprising:
a memory that stores instructions;
one or more processors configured by the instructions to
perform operations comprising:
accessing a first thread dump from an execution of an
application; and
accessing a second thread dump from the execution of
the application;
performing a comparison of the second thread dump
with the first thread dump; and
based on the comparison:
identifying a problem in the execution of the appli-
cation, and
identifying a potential problem in the execution of
the application;
determining, for each of the identified problem and the
potential problem, a relevance value;
based on the relevance value for the potential problem
being below a threshold, not causing a presentation
of information about the potential problem to a user;
and

US 9,430,355 B2

21

based on the relevance value for the identified problem
being above the threshold, causing a presentation of
information about the identified problem to the user.

15. The system of claim 14, wherein the identified prob-
lem is a deadlock.

16. The system of claim 14, wherein the operations further
comprise:

accessing a third thread dump from the execution of the

application; and

performing a comparison of the third thread dump with

the second thread dump; and wherein

the identifying of the problem in the execution in the

application by the troubleshooter module is further
based on the comparison of the third thread dump with
the second thread dump.

17. A non-transitory machine-readable storage medium
comprising instructions that, when executed by one or more
processors of a machine, cause the machine to perform
operations comprising:

10

15

22

accessing a first thread dump from an execution of an
application;
accessing a second thread dump from the execution of the
application;
performing, by a processor of a machine, a comparison of
the second thread dump with the first thread dump;
based on the comparison:
identifying a problem in the execution of the applica-
tion, and
identifying a potential problem in the execution of the
application;
determining, for each of the identified problem and the
potential problem a relevance value;
based on the relevance value for the potential problem
being below a threshold, not causing a presentation of
information about the potential problem to a user; and
based on the relevance value for the identified problem
being above the threshold, causing a presentation of
information about the identified problem to the user.

#* #* #* #* #*

